
 
 

 

 

Building a distributed search system with 

Apache Hadoop and Lucene 

 
 

 

 

 

 

 

Mirko Calvaresi 

  



Università di Roma “Tor Vergata” - “Building a distributed search system with Apache Hadoop and Lucene”  
 

 2 

 

 

a Barbara, Leonardo e Vittoria 

 

  



 Università di Roma “Tor Vergata” - “Building a distributed search system with Apache Hadoop and Lucene” 

3 
 

 

 

 

 

 

 

Index 
 

Preface ........................................................................................................................... 5	  
1	   Introduction: the Big Data Problem ........................................................................ 6	  

1.1	   Big data: handling the Petabyte scenario ............................................... 6	  
1.2	   Real Time versus Pre calculated Data .................................................... 7	  

2	   The Map and Reduce Paradigm ............................................................................ 11	  
2.1	   Common algorithms problems handled via Map And Reduce ............ 13	  

2.1.1	   Distributed “Grep” ........................................................................ 14	  
2.1.2	   Count of URL Access Frequency ................................................. 15	  
2.1.3	   Reverse Web-Link Graph ............................................................. 15	  
2.1.4	   Term-Vector per Host ................................................................... 15	  
2.1.5	   Common links in a social tree: an advanced example. ................. 16	  

3	   Apache Hadoop: a brief introduction .................................................................... 19	  
3.1	   Distributed Virtual File System: HDFS ............................................... 20	  
3.2	   HDFS Client ......................................................................................... 22	  
3.3	   HDFS High-Availability ...................................................................... 23	  
3.4	   Hadoop Job ........................................................................................... 24	  
3.5	   Admin console ..................................................................................... 27	  

4	   Implementation: The Distributing Indexing Approach ......................................... 29	  
4.1	   Apache Lucene: Architecture ............................................................... 30	  

4.1.1	   Analyzer ........................................................................................ 32	  
4.1.2	   Document ...................................................................................... 34	  
4.1.3	   Index .............................................................................................. 34	  

4.2	   Query Parser ......................................................................................... 37	  
4.3	   Retrieving and scoring results .............................................................. 39	  
4.4	   The Lucene query system ..................................................................... 39	  
4.5	   Distributing Lucene Indexes using HDFS ........................................... 42	  
4.6	   The Cluster Set up ................................................................................ 49	  

4.6.1	   Using Map-Reduce to populate the index ..................................... 51	  
4.6.2	   The Jobs architecture ..................................................................... 52	  

5	   Building up an administration console .................................................................. 54	  
5.1	   The architecture component ................................................................. 54	  
5.2	   The front end architecture .................................................................... 54	  
5.3	   Front-end design and architecture ........................................................ 56	  



Università di Roma “Tor Vergata” - “Building a distributed search system with Apache Hadoop and Lucene”  
 

 4 

5.4	   User experience .................................................................................... 57	  
5.5	   The service level .................................................................................. 59	  
5.6	   Information architecture and presentation ........................................... 61	  

6	   Testing and comparing results .............................................................................. 63	  
6.1	   Simulations ........................................................................................... 67	  

7	   Alternatives based on real time processing ........................................................... 70	  
8	   Bibliography .......................................................................................................... 74	  

8.1	   Web Resources ..................................................................................... 75	  

 
  



 Università di Roma “Tor Vergata” - “Building a distributed search system with Apache Hadoop and Lucene” 

5 
 

Preface  
 
This work analyses the problem coming from the so called Big Data scenario, 

which can be defined as the technological challenge to manage and administer 

quantity of information with global dimension in the order of Terabyte 

(10!"  bytes) or Petabyte (10!"  bytes) and with an exponential growth rate. 

We’ll explore a technological and algorithmic approach to handle and calculate 

theses amounts of data that exceed the limit of computation of a traditional 

architecture based on real-time request processing: in particular we’ll analyze a 

singular open source technology, called Apache Hadoop, which implements 

the approach described as Map and Reduce. 

We’ll describe also how to distribute a cluster of common server to create a 

Virtual File System and use this environment to populate a centralized search 

index (realized using another open source technology, called Apache Lucene).  

The practical implementation will be a web based application which offers to 

the user a unified searching interface against a collection of technical papers.  

The scope is to demonstrate that a performant search system can be obtained 

pre-processing the data using the Map and Reduce paradigm, in order to obtain 

a real time response, which is independent to the underlying amount of data. 

Finally we’ll compare this solutions to different approaches based on 

clusterization or No SQL solutions, with the scope to describe the 

characteristics of concrete scenarios, which suggest the adoption of those 

technologies. 

 

 	  



Università di Roma “Tor Vergata” - “Building a distributed search system with Apache Hadoop and Lucene”  
 

 6 

1 Introduction: the Big Data 
Problem 

 

1.1 Big data: handling the Petabyte scenario  
 
According to the study “The Diverse and Exploding Digital Universe”i , the 

digital universe was in 2007 at 2.25 x 1021 bits (281 exabytes or 281 billion 

gigabytes) and in 2011 was expected to be 10 times bigger. 

One of the more interesting aspects of the study is that the evolution of data in 

the digital universe evolves much faster then More’s Law and so explosion of 

data produced principally by the users opens the way to a new paradigm of 

software component architectures. 

In 2012, Gartner updated its definition as follows: "Big data are high volume, 

high velocity, and/or high variety information assets that require new forms of 

processing to enable enhanced decision making, insight discovery and process 

optimization1. 

 

Big Data is a common term used to describe projects involving an amount of 

data, which can’t be stored or threated using a conventional machine or even a 

cluster and queried used a DBMS approach. 

 

To give an example of what can be described as Big Data, is worth mentioning 

the actual dimensions of the most popular Social Networks: 

 

Facebook, as example, declares to process 2,5 billion pieces of content and 

more than 500 terabyte of data each day, and up to 300 millions photos per 

day2. 

                                                
1 Douglas, Laney. "The Importance of 'Big Data': A Definition". Gartner. Retrieved 21 June 2012. 
2 http://techcrunch.com/2012/08/22/how-big-is-facebooks-data-2-5-billion-pieces-of-content-and-500-terabytes-
ingested-every-day/ 



 Università di Roma “Tor Vergata” - “Building a distributed search system with Apache Hadoop and Lucene” 

7 
 

Youtube, the popular platform for sharing and storing video, declares to have 

more than 72 hours of video uploaded per minutes3.  

Walmart handles more than 1 million customer transactions every hour, which 

is imported into databases estimated to contain more than 2.5 petabytes (2560 

terabytes) of data. 

Twitter from 2006 (when it was launched) to 2011 was up to 50 million tweets 

per day4. 

As can been easily understood, it’s impossible to describe this kind of projects 

with a traditional architecture based on a standard multitier application, with a 

presentation layer, a data layer and a service layer.  

Even the normal approach based on a clusterization of components like 

database or storage systems cannot be applied when the amount of data is so 

massive, because after a given dimension indexes or keys can’t work properly 

(and so functions like sorting or grouping). 

 

What has to be re-thought is the global algorithmic approach. In other words 

when scenario evolves to a Big data scenario the architecture has to be 

radically different. 

1.2 Real Time versus Pre calculated Data 
 
The traditional DBMS approach has been the central component, and still 

remains for the majority of the current web projects, of the so-called “Multitier 

Architecture”5. The important and the advantage of the database can be 

summarized using keywords integrity, interactive access, structured. 

Databases, in fact, maintain structured data and offer consistency across the 

allowed operations, handle authorization of the users, backup, views and etc. 

                                                
3 http://www.youtube.com/yt/press/statistics.html 
4 https://blog.twitter.com/2011/numbers 
5 http://en.wikipedia.org/wiki/Multitier_architecture 



Università di Roma “Tor Vergata” - “Building a distributed search system with Apache Hadoop and Lucene”  
 

 8 

As widely adopted, the access to the database is managed by SQL (Structured 

Query Language) and therefore interoperability between different vendors is 

guaranteed.  

Plus these days it’s common to have software tools that actually make the SQL 

query even transparent to the application layer, converting database schema 

into an Object oriented mapping.  

These tools are called ORM (Object Relation Mapping) and act as software 

proxies against the DBMS, adapting the query to the specific vendor etc.  

Moreover database can be clustered and organized in a way to manage 

redundancy and fail over and handle a growing number of requests. 

Again, though, this scenario is good to manage a linear data growth, but not an 

exponential one, and not the case when the data exceeds the physical limit of 

the DBMS. 

There’s another important aspect that has to be taken into consideration, and is 

the balance between read and write operations. 

It’s easy to demonstrate that most of the web activities of the users, as 

example, are “read only” transactions against the database, more than “write” 

ones, so they don’t affect the data stored in the DBMS or present on the 

system. If we look at the list of the most accessed portals and website of the 

world, we can easily see that they offer the large majority of their contents in 

read mode, and just a small subset involves the data coming from the user.  

As example let’s take into consideration a simple home page of a major portal 

like BBC.com. It is very rich of contents coming presumably from a Content 

Management System with its own database where the content types like pages, 

news, links are stored.  

Of course each time a visitor comes to the portal one or many transactions have 

to be opened against the CMS Database to retrieve all the data, which can 

involve different tables and schemas.  

And this operation has to be theoretically repeated for each user generating a 

lot of traffic from the presentation layer to the database. 



 Università di Roma “Tor Vergata” - “Building a distributed search system with Apache Hadoop and Lucene” 

9 
 

To avoid these problems, most of the current systems use a strong cache 

approach, which consists of loading data in memory and serving them directly 

from the server memory instead of invoking the database layer. 

Sometimes the cache is distributed to a cluster of frontend servers, which act as 

first responders to the client, and at given intervals, ask the database layer to 

refresh their data.  

This approach actually is based on simple hash table that links a resource key 

to its contents. If the entry for content it’s not present in memory, a new 

request is made against the data layer. 

We’ll see that this is very close to what it’s the Map and Reduce algorithm, but 

it’s used just when the data is already stored and calculated.  

What if this is not possible? For example there are scenario where simply 

database it’s not applicable: each database as a physical limit, which is 

declared by the vendor6. 

Also the performance of a database depends strongly on the number of rows 

stored: a join between 2 tables with a very big number or records takes a longer 

time than one made against a small record set, etc.  

All these aspects become crucial when the amount of data hits the “terabyte” 

limit, or exceeds the capacity of a single computer.  

On the other side the users expect to have an immediate feedback from a 

system, no matter how complex and potentially articulated the request is.  

In that case the only solution is to have architectures, which first calculate the 

data, and then serve them to the clients.  

To fulfill this scope, as explained, it’s required and algorithm and an 

infrastructure approach: the first to analyze the data and the second to 

distribute them and retrieve efficiently from a cluster of nodes. 

The approach we’re going to introduce is Map and Reduce and has its perfect 

application when data are unstructured, and that’s because it is designed to 

interpret data at a processing time. In other words the input for this approach 

                                                
6 For example according to the Oracle documentation the DB size can’t be bigger of 4 Gb 
http://docs.oracle.com/cd/B19306_01/server.102/b14237/limits002.htm#i287915 



Università di Roma “Tor Vergata” - “Building a distributed search system with Apache Hadoop and Lucene”  
 

 10 

are not the intrinsic properties of the data, but the ones chosen by the 

implementation. 

  



 Università di Roma “Tor Vergata” - “Building a distributed search system with Apache Hadoop and Lucene” 

11 
 

2 The Map and Reduce Paradigm 
 
Map and reduce approach was originally proposed by Google 7 in order to 

describe “a programming model and an associated implementation for 

processing and generating large data sets.” 

The core steps of the algorithm are the Map and the Reduce function. 

The computation takes a set of input key/value pairs, and produces a set of 

output key/value pairs.  

 

Map, written by the user, takes an input pair and produces a set of intermediate 

key/value pairs.  

 

The Reduce function, also written by the user, accepts an intermediate key and 

a set of values for that key. It merges together these values to form a possibly 

smaller set of values.  

 

The map function takes a value and outputs key, value pairs while the output 

functions merge the key into a list. 

Conceptually they can be defined in the following formal way: 

𝑚𝑎𝑝 𝑘!, 𝑣! → 𝑙𝑖𝑠𝑡 𝑘!, 𝑣!   

𝑟𝑒𝑑𝑢𝑐𝑒 𝑘!, 𝑙𝑖𝑠𝑡 𝑣! → 𝑙𝑖𝑠𝑡(𝑣2)  

For instance, if we define a map function that takes a string and outputs the 

length of the word as the key and the word itself as the value then Map phase 

would produce a list of entry for each word with their respective length: 

 

"𝐻𝑒𝑙𝑙𝑜" → 𝑚𝑎𝑝(hello, 5) 

"𝐶𝑟𝑢𝑒𝑙" → 𝑚𝑎𝑝(cruel, 4) 

"𝑊𝑜𝑟𝑙𝑑" → 𝑚𝑎𝑝(𝑤𝑜𝑟𝑙𝑑, 5) 

 

                                                
7 http://static.googleusercontent.com/external_content/untrusted_dlcp/research.google.com/it//archive/mapreduce-
osdi04.pdf 



Università di Roma “Tor Vergata” - “Building a distributed search system with Apache Hadoop and Lucene”  
 

 12 

A common example of Map and Reduce approach is a simple “counting 

problem”. Assuming we need to count occurrences of words in different 

sources we can use the map function to count each word and the reduce one to 

aggregate the results per key (which is the term itself).  

In a distributed environment each mapper counts the occurrence e a single 

word in his resources emitting a 𝑤𝑜𝑟𝑑! , 1  association. 

The reduce function aggregates the reports creating the final report and 

therefore the 𝑤𝑜𝑟𝑑! , 𝑖 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑒! .  

The implementation will the roughly the following: 
 

function map(String name,Resource s):  

 for each word w in Resource:   

   emit (w, 1)  

 

function reduce(String word, Iterator pCounts):  

   counts   sum = 0   

 for each pc in pCounts:     

 sum += ParseInt(pc)   

 emit (word, sum) 

 

It easy to note that the Map function is stateless and therefore parallelizable 

and that’s one of the most important characteristics that’s makes this approach 

the perfect candidate for large and distributed systems.  

The same stands for the Reduce function. In fact we can multiply maps and 

reducers which works in parallel as a distributed processing network. This is 

the core approach for parallelization implemented in Apache Hadoop as shown 

in the following picture. 

 



 Università di Roma “Tor Vergata” - “Building a distributed search system with Apache Hadoop and Lucene” 

13 
 

 
Figure 1 Map and Reduce Tasks Suffle 

 

2.1 Common algorithms problems handled via Map 

And Reduce 
 

As general consideration Map and Reduce approach can serve each algorithmic 

problem which computation can be parallelizable and aggregated at the end. 

In the paper “Map-Reduce for Machine Learning on Multicore” 8  from 

University of Stanford, is analyzed the usage of that algorithm to solve some 

machine learning analysis, in particular for: 

 

• Locally Weighted Linear Regression  

• Naive Bayes 

• Gaussian Discriminative Analysis 

• k-means 

• Logistic Regression 

• Neural Network 

                                                
8 http://www.cs.stanford.edu/people/ang/papers/nips06-mapreducemulticore.pdf 

In
pu
t	  d
at
a 

  
 

  
 

  
 

  
 

Map
per
Map
per
Map
per
Map
per

 
 

  
 

 

  
 

Redu
cer
Redu
cer
Redu
cer
Redu
cer

 

 

  

Ou
tp
ut
	  d
at
a 

 
 

  
 

 

  
 

 

Intermediate	  (key,value)	  pairs 



Università di Roma “Tor Vergata” - “Building a distributed search system with Apache Hadoop and Lucene”  
 

 14 

• Principal Components Analysis 

• Independent Component Analysis 

• Expectation Maximization 

• Support Vector Machine 

 

Since is a generally purpose analysis could be worth to show how to apply 

map-reduce to Principal Component Analysis9.  

Given a covariance matrix, 

 

=
1
𝑚   ( 𝑥!𝑥!!)− 𝜇  𝜇!

!

!!!
 

It’s possible to calculate the eigenvectors applying partial sum and then 

reducing to calculate the total.  

In fact the term 𝑥!𝑥!!!
!!!  is already expressed in summation form, ma also the 

mean can be expressed as 𝜇 = !
!
   𝑥!!

!!! . 

 

The sums can be mapped to separate cores, and then the reducer will sum up 

the partial results to produce the final empirical covariance matrix. 

Given these considerations, it’s easy to conclude that it’s possible to apply this 

algorithm to many operations regarding matrix analysis and transformation 

(matrix product as example). 

 

In the following paragraph we’ll show examples of common industrial 

problems than can be addressed using a Map and Reduce approach. Each of the 

following examples has an implicit assumption that the environment is 

distributed and quantity of data deserves a parallel processing.  

2.1.1 Distributed “Grep” 
This could be considered the simplest case when it’s needed to grep a 

particular expression against a considerable amount of documents. In this case 

                                                
9 https://en.wikipedia.org/wiki/Principal_component_analysis 



 Università di Roma “Tor Vergata” - “Building a distributed search system with Apache Hadoop and Lucene” 

15 
 

the map function emits a line if it matches a supplied pattern. The reduce 

function is an identity function that just copies the supplied intermediate data 

to the output. 

 

2.1.2 Count of URL Access Frequency 
Assume in this case that we want to count the URL access frequency in a set of 

log file (ad example Apache accesses logs file).  

The map function processes logs of web page requests and output a simple 

(URL, 1).  

The reduce function adds together all values for the same URL and emits 

a  (URL,𝑇𝑜𝑡𝑎𝑙). Ad end of the reduction phase we have the aggregated value. 

 

2.1.3 Reverse Web-Link Graph 
In this case the goal is to have the list of the URL associated with a given 

target. The map function outputs (target, 𝑠𝑜𝑢𝑟𝑐𝑒) pairs for each link to a target 

URL found in a page named source. The reduce function concatenates the list 

of all source URLs associated with a given target URL and emits the pair: 

(target, 𝑙𝑖𝑠𝑡).  

 

2.1.4 Term-Vector per Host 
A term vector summarizes the most important words that occur in a document 

or a set of documents as a list of word, 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦  pairs.  

The map function emits a (ℎ𝑜𝑠𝑡𝑛𝑎𝑚𝑒!, 𝑡𝑒𝑟𝑚 < 𝑉 >) pair for each input 

document (where the hostname is extracted from the URL of the document). 

The reduce function is passed all per-document term vectors for a given host. It 

adds these term vectors together, throwing away infrequent terms, and then 

emits a (ℎ𝑜𝑠𝑡𝑛𝑎𝑚𝑒!, 𝑡𝑒𝑟𝑚 < 𝑉 >)  pair. 

 



Università di Roma “Tor Vergata” - “Building a distributed search system with Apache Hadoop and Lucene”  
 

 16 

2.1.5 Common links in a social tree: an advanced example.  
 
Most of contemporary social networks implements the idea of list of contacts 

associated to an account.  

These problems fallback into the general algorithms regarding graph visiting 

and search. One of the simplest way to explore a graph is the “Breadth first 

search10” which explores the graph using a per-level approach and has a time 

complexity of O(n) where n stands for the number of nodes in the graph. 

That means that basically the algorithms evolves with a time complexity, which 

grows linearly with the size of the graph, and so it’s hardly applicable to big 

graph like the social graph, i.e. graph representing relation between users of a 

very large community.  

 

Map and Reduce proved to be a good algorithm strategy to implement this 

operations preprocessing the data and to reduce it to a common key->value 

data structure.  

As example, let’s consider extracting the common friends of a list of nodes in a 

social graph like Linkedin or Facebook. 

Assume the friends are stored as Person->[List of Friends], the list is then: 

A -> B C D 

B -> A C D E 

C -> A B D E 

D -> A B C E 

E -> B C D 

Each line will be an argument to a mapper. For every friend in the list of 

friends, the mapper will output a key-value pair. The key will be a friend along 

with the person. The value will be the list of friends. The key will be sorted so 

that the friends are in order, causing all pairs of friends to go to the same 

reducer.  

For map (A -> B C D) : 

                                                
10 http://en.wikipedia.org/wiki/Breadth-first_search 



 Università di Roma “Tor Vergata” - “Building a distributed search system with Apache Hadoop and Lucene” 

17 
 

(A B) -> B C D 

(A C) -> B C D 

(A D) -> B C D 

For map (B -> A C D E): (Note that A comes before B in the key) 

(A B) -> A C D E 

(B C) -> A C D E 

(B D) -> A C D E 

(B E) -> A C D E 

For map (C -> A B D E): 

(A C) -> A B D E 

(B C) -> A B D E 

(C D) -> A B D E 

(C E) -> A B D E 

For map (D -> A B C E) : 

(A D) -> A B C E 

(B D) -> A B C E 

(C D) -> A B C E 

(D E) -> A B C E 

And finally for map (E -> B C D): 

(B E) -> B C D 

(C E) -> B C D 

(D E) -> B C D 

Before being sent these key-value pairs to the reducers, they will be grouped 

by their keys and get: 

(A B) -> (A C D E) (B C D) 

(A C) -> (A B D E) (B C D) 

(A D) -> (A B C E) (B C D) 

(B C) -> (A B D E) (A C D E) 

(B D) -> (A B C E) (A C D E) 

(B E) -> (A C D E) (B C D) 

(C D) -> (A B C E) (A B D E) 



Università di Roma “Tor Vergata” - “Building a distributed search system with Apache Hadoop and Lucene”  
 

 18 

(C E) -> (A B D E) (B C D) 

(D E) -> (A B C E) (B C D) 

Each line will be passed as an argument to a reducer. The reduce function will 

simply intersect the lists of values and output the same key with the result of 

the intersection. For example, reduce((A B) -> (A C D E) (B C D)) will output 

(A B) : (C D) and means that friends A and B have C and D as common 

friends. 

The result after reduction is: 

(A B) -> (C D) 

(A C) -> (B D) 

(A D) -> (B C) 

(B C) -> (A D E) 

(B D) -> (A C E) 

(B E) -> (C D) 

(C D) -> (A B E) 

(C E) -> (B D) 

(D E) -> (B C) 

Now when D visits B's profile, it is possible to look up (B D) and see that they 

have three friends in common, (A C E). 

In simple words this approach reduce a n level graph in a redundant hash table 

which are the considerable advantage to have a constant time complexity for 

retrieving data (O(1)).  

 	  



 Università di Roma “Tor Vergata” - “Building a distributed search system with Apache Hadoop and Lucene” 

19 
 

3 Apache Hadoop: a brief 
introduction 

 
Apache Hadoop is an open source project that comes from Doug Cutting, the 

same inventor of Lucene, the most popular open source search library,11 and its 

origin from another open source project, Apache Nutch12, which originally was 

a web search engine originally created on 2002. 

Apache Nutch project was very ambition13 since the beginning and also from 

the first sketch of the overall architecture was clear that one of the most critical 

point was the scalability cost of the project, but also the simple possibility to 

store billions of entry in the indexes. 

The solution came with the Google paper about Map and Reduce approach, so 

the team decided to operate a first porting of this implementation in Nutch in 

2005. This project branched from Nutch in 2006 becoming an autonomous 

project called Hadoop.  

The real success of Hadoop was due to the adoption of this project from Yahoo 

when the Cutting joined Yahoo.  

In 2008 Yahoo announced to have a production 10000 cores Hadoop cluster14. 

As declared from the company those are the numbers managed: 

• Number of links between pages in the index: roughly 1 trillion links 

• Size of output: over 300 TB 

• Number of cores used to run a single Map-Reduce job: over 10,000 

• Raw disk used in the production cluster: over 5 Petabytes 

Today Hadoop is used by a very large number of companies15: among the 

others Facebook declares to have:  

• A 1100-machine cluster with 8800 cores and about 12 PB raw storage, 

• A 300-machine cluster with 2400 cores and about 3 PB raw storage, 
                                                
11 http://lucene.apache.org/ 
12 http://nutch.apache.org/ 
13 A story and the difficulties found in building this architecture can be found at 
http://dl.acm.org/citation.cfm?id=988408 
14 Complete description of this first installation is at http://developer.yahoo.com/blogs/hadoop/yahoo-launches-world-
largest-hadoop-production-application-398.html 
15 http://wiki.apache.org/hadoop/PoweredBy 



Università di Roma “Tor Vergata” - “Building a distributed search system with Apache Hadoop and Lucene”  
 

 20 

used mainly to parse logs and post process data.  

Other companies like Linkedin, Last.fm, Rackspace etc, use Hadoop for 

different purposes varying from reporting to content analysis or machine 

learning.  It’s worth to mention that one of the really useful aspect of this 

technology is that really scales from small cluster to dimension that can be 

found just in a very few company in the entire world, and that’s why adoption 

and implementation is growing as documented from many sources. 

3.1 Distributed Virtual File System: HDFS 
 
Apache Hadoop comes also with a distributed file system, which is the real 

core of the infrastructure. The nature of the HDFS (Hadoop Distributed 

FyleSystem) is to store data of big size. The architecture of the system is 

described in the paper “The Hadoop Distributed File System16”and defines the 

core of the architecture as follow: 

 

“Hadoop provides a distributed file system and a framework for the analysis 

and transformation of very large data sets using the MapReduce paradigm. An 

important characteristic of Hadoop is the partitioning of data and computation 

across many (thousands) of hosts, and executing application computations in 

parallel close to their data. A Hadoop cluster scales computation capacity, 

storage capacity and IO bandwidth by simply adding commodity servers”. 

 

The real innovation in this architecture is to scale up to number potentially very 

large of nodes adding common components (commodity server) without 

depending a on a central mainframe or computer with extraordinary 

computations capabilities. 

Since Hadoop implements in fact a file system, it stores application metadata 

and data separately. 

 

                                                
16 http://storageconference.org/2010/Papers/MSST/Shvachko.pdf 



 Università di Roma “Tor Vergata” - “Building a distributed search system with Apache Hadoop and Lucene” 

21 
 

The two main components of a Hadoop Clusters are the NameNode and 

DataNode. 

NameNode is the server dedicated to store application metadata, while 

application data are stored in the datanodes. The communication is realized 

using the TCP/IP stack. 

The HDFS namespace is a hierarchy of files and directories. Files and 

directories are represented by inodes, which record attributes like permissions, 

modification and access times.  

The entire namespace is stored in the primary memory (RAM) and it’s used to 

map and address the single inode to the relative datanode.  

Unlike other traditional File System implementation used on the operating 

system (like EXT4) the size of an inode in Hadoop is very large (64mb) and 

it’s meant to have data of relevant dimensions.  

The name node also stores the modification log of the image called the journal 

in the local host’s native file system. 

Two files represent each inode on the datanode: the first contains the data itself 

while the second is used to store checksum and generation stamp. 

During the startup of the single datanode it makes and handshake with the 

name node. This process is used to verify the namespace ID and the to detect 

that there aren’t version collisions.  

The namespace ID assured the consistency of the datanode in the namenode 

tree memory structured, and therefore its reachability and interoperability. 

In the distributed Hadoop architecture the namespace ID is a unique identifier, 

which sits on top of the IP network topology, meaning that remains unique and 

identifies the host even if the datanode changes IP address. 

After handshaking namenode send heartbeats to the datanode to ensure that is 

still running within a short interval (3 seconds). Heartbeats are the small 

information messages passed across the network to retrieve the global status. 

  



Università di Roma “Tor Vergata” - “Building a distributed search system with Apache Hadoop and Lucene”  
 

 22 

 

3.2 HDFS Client 
 
Applications access the Hadoop network using a specific client. 

HDFS supports operations to read, write and delete files and directories. The 

user references files and directories by paths in the namespace and so it’s 

transparent to the application layer. 

When a data read is required, the client first invokes the namenode for the list 

of datanodes that host replicas of the blocks of the file and list is sorted 

according to the network topology distance. The client contacts a dataNode 

directly and requests the transfer of the desired block. When there is a write 

operation it first asks the namenode to choose datanode to host replicas of the 

first block of the file.  

On top of this mechanism there is an application client, which is syntactically 

similar to a command line interface of Unix Operating System, and allows 

executing most of the operations exposed to a normal file system, line creation, 

copy, delete, read both for file or folders. 

Il Figure1 is represented the logical communication between namenode and 

datanode when the client is activated. 



 Università di Roma “Tor Vergata” - “Building a distributed search system with Apache Hadoop and Lucene” 

23 
 

 
Figure 2 The HDFS Client 

Examples of commands to access the client are the following: 
hadoop fs -put [file] [hdfsPath] Stores a file in HDFS 

hadoop fs -ls [hdfsPath]  List a directory 

hadoop fs -get [hdfsPath] [file]  Retrieves a file from HDFS 

hadoop fs -rm [hdfsPath]  Deletes a file in HDFS 

hadoop fs -mkdir [hdfsPath] Makes a directory in HDFS 

 

3.3 HDFS High-Availability 
 
With this scenario it’s easy to understand that datanode becomes a single point 

of failure (SPOF), since if it fails, all clients—including Map Reduce jobs—

would be unable to read, write, or list files, because the namenode is the only 

and sole repository of the metadata and the file-to-block mapping. In such an 

event the whole Hadoop system would be in an inconsistent state or out of 

service. 

A solution to this problem is to backup and recover the datanode, but event this 

scenario could present some consistent downsides because before having again 

the system running it is necessary that the new datanode has the namespace in 



Università di Roma “Tor Vergata” - “Building a distributed search system with Apache Hadoop and Lucene”  
 

 24 

memory and have received enough block from the datanode. That could cost a 

not insignificant time on large clusters.  

The 0.23 release series of Hadoop remedies this situation by adding support for 

HDFS high-availability (HA): a pair of namenodes in an active standby 

configuration. In the event of the failure of the active namenode, the standby 

takes over its duties to continue servicing client requests without a significant 

interruption. To accomplish this new scenario though: 

1. The namenodes must use highly-available shared storage to share the 

edit log  

2. Data nodes must send block reports to both namenodes since the block 

mappings are stored in a namenode’s memory, and not on disk.  

3. Clients must be configured to handle namenode failover, which uses a 

mechanism that is transparent to users.  

 

Another important feature added from version 2.x is the HDFS Federation, 

which basically allows a single namenode to manage a portion of the file 

system namespace, like “/user” of “/document”. Federation allows a single 

datanode to manage a namespace’s volume which is made up of the data in 

namespace and the blocks of the namespace itself. 

Since this namespace don’t communicate between each other the failure of one 

does not affect the others, so prevents that a single failure affects the total 

cluster. 

3.4 Hadoop Job 
 
Besides the HDFS, the other main component in a running installation, are 

Hadoop jobs.  

The job is the actual software which implements the Map and Reduce approach 

against the data stored on the datanodes.  



 Università di Roma “Tor Vergata” - “Building a distributed search system with Apache Hadoop and Lucene” 

25 
 

The job is usually a Jar file of a program implementing the two core interfaces: 

Map and Reduce. Using the usual example of the word count, it can be reduced 

to a single file jar where is implemented the map class: 

 
public static class Map extends MapReduceBase implements 

Mapper<LongWritable, Text, Text, IntWritable> { 
 

and the reduce class: 
 

public static class Reduce extends MapReduceBase implements 

Reducer<Text, IntWritable, Text, IntWritable> { 
 

 

Of course also the main file has some basic information about the input 

parameters to be passed to the job, like the output values and the input path 

where to find the input paths: 

 
public static void main(String[] args) throws Exception { 
  JobConf conf = new JobConf(WordCount.class); 
  conf.setJobName("wordcount"); 
  conf.setOutputKeyClass(Text.class); 
  conf.setOutputValueClass(IntWritable.class); 
  conf.setMapperClass(Map.class); 
  conf.setCombinerClass(Reduce.class); 
  conf.setReducerClass(Reduce.class); 
  conf.setInputFormat(TextInputFormat.class); 
  conf.setOutputFormat(TextOutputFormat.class); 
  FileInputFormat.setInputPaths(conf, new Path(args[0])); 
  FileOutputFormat.setOutputPath(conf, new Path(args[1])); 
  JobClient.runJob(conf); 
 } 

 

So the entire program will be just composed of the following code: 
public class WordCount { 
 
 public static class Map extends MapReduceBase implements 
   Mapper<LongWritable, Text, Text, IntWritable> { 
  private final static IntWritable one = new 
IntWritable(1); 
  private Text word = new Text(); 
 
  public void map(LongWritable key, Text value, 
    OutputCollector<Text, IntWritable> output, 
Reporter reporter) 
    throws IOException { 
   String line = value.toString(); 



Università di Roma “Tor Vergata” - “Building a distributed search system with Apache Hadoop and Lucene”  
 

 26 

   StringTokenizer tokenizer = new 
StringTokenizer(line); 
   while (tokenizer.hasMoreTokens()) { 
    word.set(tokenizer.nextToken()); 
    output.collect(word, one); 
   } 
  } 
 } 
 
 public static class Reduce extends MapReduceBase implements 
   Reducer<Text, IntWritable, Text, IntWritable> { 
  public void reduce(Text key, Iterator<IntWritable> 
values, 
    OutputCollector<Text, IntWritable> output, 
Reporter reporter) 
    throws IOException { 
   int sum = 0; 
   while (values.hasNext()) { 
    sum += values.next().get(); 
   } 
   output.collect(key, new IntWritable(sum)); 
  } 
 } 
 
 public static void main(String[] args) throws Exception { 
  JobConf conf = new JobConf(WordCount.class); 
  conf.setJobName("wordcount"); 
 
  conf.setOutputKeyClass(Text.class); 
  conf.setOutputValueClass(IntWritable.class); 
 
  conf.setMapperClass(Map.class); 
  conf.setCombinerClass(Reduce.class); 
  conf.setReducerClass(Reduce.class); 
 
  conf.setInputFormat(TextInputFormat.class); 
  conf.setOutputFormat(TextOutputFormat.class); 
 
  FileInputFormat.setInputPaths(conf, new Path(args[0])); 
  FileOutputFormat.setOutputPath(conf, new Path(args[1])); 
 
  JobClient.runJob(conf); 
 } 
}  

To run it on an Hadoop it is necessary to install it, using the HDFS client 

(passing the required parameters, and in particular the input folder and the 

output folder where results will be store): 
bin/hadoop jar word_count.jar WordCount /user/mccalv/input_data 

/user/mccalv/output 

 

Once installed it produces the logs file regarding the map and reduce job and 

write the output of the reduceer to the relative folder (“/user/mccalv/output  in 

this case”).  



 Università di Roma “Tor Vergata” - “Building a distributed search system with Apache Hadoop and Lucene” 

27 
 

3.5 Admin console 
The installation by default comes with an administration console, which 

inspects the actual status of clusters, capacity, and jobs running on it. The 

administrative tools, which are part of the suite, have a relatively high impact 

when the dimension of the installation and number of nodes become high like 

the tree of folders in HDFS. 

 

 

The job page instead gives essential information about the job including all the 

properties and their values in effect during the job run.  

The jobs results are stored by each single reduced by a file named “part-r-

0000” to max “part-r-0029” in the output directory which is usually indicated 

in the configuration file. Since the amount of output produced by the reducer is 

usually very short a common way to get the total result is to merge the single 

outputs into one:  
 Hadoop fs –getmerge /output 

This architecture describes a relatively simple network, but the complexity can 

be scaled to a higher level introducing a 2 level network topology with a top 

level switch and a lower level consisting or racks of node. 

In cases like this one Hadoop should be aware of the network topology, 

represented internally with a tree with relative distances. Distances are used by 



Università di Roma “Tor Vergata” - “Building a distributed search system with Apache Hadoop and Lucene”  
 

 28 

name node to determine where the closest replica is as input to a map task. 

  



 Università di Roma “Tor Vergata” - “Building a distributed search system with Apache Hadoop and Lucene” 

29 
 

 

4 Implementation: The Distributing 
Indexing Approach 

 

Scope of this section is to investigate the possibility and propose a solution to 

distribute search functionality to a Hadoop cluster, getting benefits from this 

combination primary in term of performances. 

Typically a Search Engine consists of three main components: a crawler, an 

index and a search interface.  

For the end user, of course, the only visible and accessible part is the search 

interface, which offers the high level access to the functionality.  

The modern search engine, influenced from what done by major player like 

Google, Yahoo, Microsoft, offers a general purpose search which is usually 

presented as a keywords based search, which can eventually filter its results 

per content type (web pages, images, document).  

In other terms, the search functionality is expected by the end user as a 

“semantic” attribute of the source and independent from the binary format of 

the inputs. 

To fulfill these tasks is necessary to realize a centralized index, which stores all 

the documents, presents and provide a unique search API.  

Besides this base component there are other really important aspects like 

relevance and scoring of the results with pretty much determines the validity 

and reliance of the toll itself at least from a user perspective. 

In the next part of the work we’ll introduce a standard, de facto, in the open 

source community for textual search, Apache Lucene.  

Then comes the amount of data: how to search in a unified way against an 

amount of data, which exceeds the limit of physically single machine index 

capacity.  

The solution proposed in this work is to integrate the algorithm approach 



Università di Roma “Tor Vergata” - “Building a distributed search system with Apache Hadoop and Lucene”  
 

 30 

already expressed as Map and Reduce with the Lucene index.  

The scope is to populate the index using the HDFS cluster and on the other 

hands, distributing and retrieving the query using the reduce part and 

eventually measures the benefits. We’ve already introduces the technology for 

distributing and analyzing the data, while in the section we’ll introduce the one 

to search: Apache Lucene. 

 

4.1 Apache Lucene: Architecture 
 
Lucene is a very popular Java library for textual search. It was created again 

from the same creator of Hadoop, Doug Cutting, in 1999. Originally it was 

written in Java but these days several implementations are available for other 

languages like Python, C, C++, etc. 

The core of Lucene and the reason why it is so popular is basically supporting 

full text searches against documents stored in various format, like PDF, 

HTML, Text and so on. 

An overview of the index part of Lucene is show in Figure 3. As shown the 

basic flow starts from a document, which is binary file parsed, then analyzed 

and finally added to the index. 

To convert a document and extract its content usually a parser is used. A 

parser is component capable of extracting the textual content of a document 

from its binary format. 

In fact search library are mostly text based, meaning the input for the analyzing 

is a text string, but of course we intend the term document as a binary file with 

specific extensions (PDF, HTML, DOCX) and opened and edited by specific 

software. 

 

There are several projects available to provide parser for binary proprietary 

files, one of the most important and also integrated into Lucene is Apache 



 Università di Roma “Tor Vergata” - “Building a distributed search system with Apache Hadoop and Lucene” 

31 
 

Tika17.  

The main operation that a parser does is: 

 

parse (InputStream, ContentHandler) 

 

which is the basic operation of converting ad input stream into a 

ContenHandler, which is a textual representation of the file.  

The parser is the generic interface for all the format specific parsers that can be 

invoked according to the mime type of the input document. In other words a 

specific parser has to be instantiated in order to parse an Html page and extract 

its content out of the html tags, or for a PDF, a word document an so on.  

Once parsed, the text extracted is ready to be analyzed by Lucene. The 

following picture represents the general flow of documents, which, coming 

which different extensions, one parsed, can be analyzed and finally populate 

the Index.  

                                                
17 http://tika.apache.org/ 



Università di Roma “Tor Vergata” - “Building a distributed search system with Apache Hadoop and Lucene”  
 

 32 

 

4.1.1 Analyzer 
 
The analyzers are the software components used to tokenize text, i.e. the 

operation to reduce a text into a list of text units (token) which can correspond 

to a word but can be also a character sequence, a phrase, an email address, 

URL, etc. 

Some tokenizers such as the Standard Tokenizer consider dashes to be word 

boundaries, so “top-level” would be two tokens (“top” and “level”). Other 

tokenizers such as the Whitespace tokenizer only considers whitespace to be 

word boundaries, so “top-level” would be a single token. 

Tokenization is a bottom up operation, different from techniques that consider 

first the whole document, then the sentences to parse.  

Analyzers can do more complex manipulations to achieve better results. For 

example, an analyzer might use a token filter to spell check words or introduce 

synonyms so that searching for “search” or “find” will both return the same 

Figure 3 Apache Lucene Index Population 



 Università di Roma “Tor Vergata” - “Building a distributed search system with Apache Hadoop and Lucene” 

33 
 

entries in the index. 

As example we applied two different analyers (WhiteSpace and Standard) to 

the same input string “The world is indeed full of peril and in it there are many 

dark places”18. 

In the first case we have this ouput: 
world (4 9) 
indeed (13 19) 
full (20 24) 
peril (28 33) 
many (54 58) 
dark (59 63) 
places (64 70) 
 

While in the second case, the output was the following, including all the words 

like articles (“The”), prepositions (“of”), adverbs (“there”), auxiliary verbs 

(“is”, “are”), which have been removed from the first analyzer because 

considered stop words: words that appears so frequently in a language, since 

they represent a consistent part of the syntax, and so to lose their function for 

search.  
The (0 3) 
world (4 9) 
is (10 12) 
indeed (13 19) 
full (20 24) 
of (25 27) 
peril (28 33) 
and (34 37) 
in (38 40) 
it (41 43) 
there (44 49) 
are (50 53) 
many (54 58) 
dark (59 63) 
places. (64 71) 
 

Of course the list of stop words isn’t language neutral: different languages have 

                                                
18  J.R.R. Tolkien, The Lord of the Rings 
 
 



Università di Roma “Tor Vergata” - “Building a distributed search system with Apache Hadoop and Lucene”  
 

 34 

different lists, and both referenced Analyzers uses English as default language. 

The architecture of Lucene allows though the creation of custom analyzers, 

which are language or locale sensitive, and use it instead of the provided ones. 

The second part of the Lucene architecture is the Index and is the place where 

all the information is stored. To introduce the index we need to first describe 

the information unit which populates the index: the document.  

4.1.2 Document 
 
Lucene provides a general abstraction layer to add entries to the index: the 

document. As basic definition document can be described as a sequence of 

fields, each one is a <name,value>pair.  

Different types of fields control which values are just stored from values 

analyzed and therefore searchable. 

It’s clear that document is a high level wrapper for a “piece” of data, and 

doesn’t give any indication to the dimension or the nature of the information 

contained, and, of course, there isn’t any connection to a document of the file 

system that originally contained all or part of that information.  

In other words, it’s an implementation decision which kind of granularity 

applying during the indexing process.  

Some applications with specific searching needs may want to decide to have a 

1-1 association between input documents and entries in the index, or have 

multiple entries (paragraph for example) from an initial document. 

 

4.1.3 Index 
 
The index is the place where the information is stored, and can be stored 

physically to a file system folder or in a memory directory: for our purposes 

we’ll limited our exploration to persisted indexes.  

A Lucene index is made up of 1-n segments. A single segment is just short of a 

self contained inverted index. The segmented nature of a Lucene index allows 



 Università di Roma “Tor Vergata” - “Building a distributed search system with Apache Hadoop and Lucene” 

35 
 

efficient updates, because rather than replacing existing segments, it is possible 

to add new ones. These segments can be eventually merged together for more 

efficient access. Obviously the number of segments impacts the performance of 

the search. 

Moreover a fewer segments also mean a many fewer open files on the file 

system by the same process, which prevents the OS to raise IO exceptions. 

Of course, it is possible to use the compound file format, which writes out 

segments in a single file, significantly reducing the number of files in the 

index.  

Optimizing a Lucene index is to operation to merge individual segments into a 

larger one. This makes searching more efficient – not only are fewer files 

touched, but with a single segment, which are a good performance impact 

because prevents Lucene to repeat basic setting operation for each segment. 

Another strategy for maintaining a low segment count is to use a low merge 

factor on the IndexWriter when adding to the index. The merge factor controls 

how many segments an index can have: having a level lower than 10 be usually 

a good tradeoff.  

The algorithmic approach to handle an incremental index is described by 

Coutting as follow:19 

• incremental algorithm: 

• maintain a stack of segment indices 

• create index for each incoming document 

• push new indexes onto the stack 

• let b=10 be the merge factor; M=∞ 

In detail the algorithm can be expressed by this pseudo code: 
for (size = 1; size < M; size *= b) { 

  if (there are b indexes with size docs on top of the stack) { 

   pop them off the stack; 

   merge them into a single index; 

   push the merged index onto the stack; 

 } else { 

                                                
19 http://lucene.sourceforge.net/talks/pisa/ 



Università di Roma “Tor Vergata” - “Building a distributed search system with Apache Hadoop and Lucene”  
 

 36 

   break; 

 } 

}  

In other words the indexed are aggregated and pushed back on a data structure 

(stack) used to maintain the indexes list.  

For a given merge factor of b, and N documents, the number of indexes can be 

expressed by the formula:  

𝑏 ∗
log! 𝑁

2  

 

To conclude, the operation of creating an entry on an index has 3 major phases, 

the text extraction and parsing, the analysis and the creation of the document. 

The following sequence diagram resume the logical sequence of the 

operations:  

 
Figure 4 Submit and Indexing of documents in Lucene (UML sequence diagram) 

  



 Università di Roma “Tor Vergata” - “Building a distributed search system with Apache Hadoop and Lucene” 

37 
 

4.2 Query Parser 
 
The query mechanism in a search engine technology is, of course, a core 

feature for comparing and evaluate the business value.  

Searching the index in performant way it’s the reason that gives to these tools a 

comparative better results than a traditional database approach based on 

standard SQL restrictions and Boolean operators.  

The input of Lucene query is a text string, which is interpreted and translated 

by a component, the QueryParser, into a Lucene Query.  

For example, the query: 

“(hobbit OR elves) and legends”, 

Is translated into  

“+(contents:hobbit contents:elves) +contents:legend”, 

 
Where “contents” is the name of the field in the document object and “+” 

means that the term must be present in the matching document. This Lucene 

query is then processed against the index.  

Scope of the Query Parser is to Turns readable expression into Query instance. 

The query types supported are: 

 
Term Query 

 A term query is the base query and matches document containing a term. So 

the expression “+content:legend” is converted in TermQuery(“content”, 

“legend”) which basically retrieves all the documents containing the term 

“legend”  in the field “content”.  

 

Boolean Query 

In the original queries there were also Boolean operator like AND, OR; these 

operator can be combined using the Boolean Query which basically combines 

Term Queries in conjunctive or disjunctive way.  

The Boolean Query is therefore a container for a list of term query 

restrictions:



Università di Roma “Tor Vergata” - “Building a distributed search system with Apache Hadoop and Lucene”  
 

 38 

𝐵𝑜𝑜𝑙𝑒𝑎𝑛𝑄𝑢𝑒𝑟𝑦 .𝑎𝑑𝑑 𝑡𝑒𝑟𝑚𝑄𝑢𝑒𝑟𝑦!,  𝐵𝑜𝑜𝑙𝑒𝑎𝑛𝐶𝑙𝑎𝑢𝑠𝑒 .𝑎𝑑𝑑 𝑡𝑒𝑟𝑚𝑄𝑢𝑒𝑟𝑦! ,𝐵𝑜𝑜𝑙𝑒𝑎𝑛𝐶𝑙𝑎𝑢𝑠𝑒 …   

 

Phrase Query 

In case it is necessary to match a number of terms in a document, it’s possible 

to use phrase query with search against documents containing a particular 

sequence of terms. 

Of course the difference between this query and a Boolean Query with two 

terms, as example, is that this query matches only document that have these 

terms in the sequence without any intervening others. 

 

Wild Card Query 

It’s the particular query which contains a special meta character, like *,  known 

as a trailing wildcard query: the system searches for any document containing 

the term and replacing the * with any possible sequence of characters, while to 

perform a single character wildcard search the symbol “?” is used 

 

These kinds of queries are useful in case of singular/plural search of a term (in 

English), problems with the term spelling, and so on. 

 

Fuzzy Query 

To perform a fuzzy search it is necessary to use the tilde, “~”, symbol at the 

end of a word term.  

Fuzzy search are based on “Levenshtein Distance” or “Edit Distance 

algoritm”20, which basically computes the number of single characters edit to 

transform a query into another. 

Since distance can be measured, this query supports also a normalized 

parameter for example “legend~0.8” (while the default is 0.5). 

 

Range query 

Range query are specific for those fields like Date Field, or numeric values for 
                                                
20 http://en.wikipedia.org/wiki/Levenshtein_distance 



 Università di Roma “Tor Vergata” - “Building a distributed search system with Apache Hadoop and Lucene” 

39 
 

which makes sense to search against an interval rather than to a specific value.  

As last example it is worth mention the proximity search which support the 

search of words with a specific distance. An example is “hobbits 

elves”~5 which searches for " hobbits " and " elves " within 5 words. 

 

It’s pretty visible, even from this short list, the gap and potential that a search 

system has if compared to a normal DBMS approach, where the only 

restrictions “like” based are absolutely inadequate to cover all these terms 

relations. 

4.3 Retrieving and scoring results 
 

4.4 The Lucene query system  
 
Query system is a core part of what Lucene, and in general for any search 

libray. We’ve already introduced the concept of document, which is the base 

entry of an index, now it is necessary to introduce the concept of document 

similarity and in general the way the search is performed against an index.  

Lucene scoring uses a combination of the Vector Space Model21 (VSM) of 

Information Retrieval and the Boolean model to determine how relevant a 

given Document is to a User's query.  

According to the Vector Space Model, each document is represented by a 

vector in a multidimensional space where the dimensions corresponds to a 

separate token together with its weight. 
 
𝑑𝑗 = (𝑤!,!, 𝑤!,! ,… ,𝑤!,!) 
𝑞 = (𝑤!,!, 𝑤!,! ,… ,𝑤!,!) 
 

                                                
21 http://en.wikipedia.org/wiki/Vector_Space_Model 



Università di Roma “Tor Vergata” - “Building a distributed search system with Apache Hadoop and Lucene”  
 

 40 

 
 
 
A measure of the relevance is the value of the 𝜃 angle between the document 
and the query vector,  

𝑐𝑜𝑠𝜃 =
𝑑! ∗ 𝑞
𝑑! | 𝑞 |

 

Where d2 is the vector representing the document, q the vector presenting the 

query, | d! , | q | are the norms, calculated respectively as follow: 

𝑞 = 𝑞!!!
!   𝑑! = 𝑑!!

!!
!  

 
In general, the concept behind VSM is the more times a query term appears in 

a document relative to the number of times the term appears in all the 

documents in the collection, the more relevant that document is to the query. It 

uses the Boolean model to first narrow down the documents that need to be 

scored based on the use of Boolean logic in the Query specification.  

 

The score of a document is a product of the coordination factor (coord) and the 

sum of the products of the query and term factors for all query terms that were 

Figure 5 Lucene query system 



 Università di Roma “Tor Vergata” - “Building a distributed search system with Apache Hadoop and Lucene” 

41 
 

found in the document to be retrieved22.  

 

𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑆𝑐𝑜𝑟𝑒 = 𝑐𝑜𝑜𝑟𝑑 ∗    (𝑞! ∗ 𝑡!
!

) 

 

Lucene allows the possibility to boost the result, which is basically the 

operation of altering the result of a query according to a major or minor weight 

given respectively to a document (document boosting), a field (field boosting) 

or a query (query boosting). 

The boosting may occur at indexing phase (in the first 2 cases) or query level. 

Boosting a field is a decision which of course has a large implication in terms 

of perceived effectiveness of the system: from the user perspective, in fact, the 

order of the results is extremely important, probably more than the 

completeness of the set retrieved by the search.  

In other words, scope of a search application should be to show the interesting 

results for the user as first in list. 

 

 	  

                                                
22  For a description of the algoritmic implementation, the complete documentation can be found at 
http://lucene.apache.org/core/3_6_2/api/core/org/apache/lucene/search/Similarity.html,  which is part of the core 
documentation of the framework.  



Università di Roma “Tor Vergata” - “Building a distributed search system with Apache Hadoop and Lucene”  
 

 42 

4.5 Distributing Lucene Indexes using HDFS 
 
The objective of this section is to describe a practical implementation of Map 

Reduce approach, in detail the aim is to build a Lucene based search web portal 

using Apache Hadoop. 

 
The core implementation will be to design a distributed index using HDFS and 

populate and query it using the Map and Reduce approach. 

The input information to search against is a collection of technical papers, 

distributed over a Hadoop Cluster.  The sources selected for the technical 

papers are extracted using the project Core 23  developed by the KMI 

(Knowledge Media Institute, London). 

The description and mission of the project is: 

“CORE (COnnecting REpositories) aims to facilitate free access to scholarly 

publications distributed across many systems”. 

The scope is therefore to collect, from different sources, the highest possible 

number of technical papers and distribute them using remote API over different 

channels (mobile, web, etc.). 

An interesting part of the project is the possibility to download documents 

using a Restful client 24(over an HTTP connection). Using that connection and 

some concurrent threads we downloaded approximately 2GB of technical 

papers accessing the Core remote APIS.  

So the input will be a collection of technical papers, parsed, indexed in Lucene 

and distributed using HFDS.  

Of course, for experimental reasons, the dimension of the documents library 

must be comparable to a “Big Data” scenario, which is of course practically 

difficult to achieve with a limited number of machines used for the scope of 

this analysis. 

From implementation and algorithm point of view, however, the solution 

                                                
23 http://core.kmi.open.ac.uk/search 
24 http://en.wikipedia.org/wiki/Representational_state_transfer This kind of approach has become very familiar in the 
last years because widely used as component part of a Service Oriented Architecture usually as alternative to SOAP.  



 Università di Roma “Tor Vergata” - “Building a distributed search system with Apache Hadoop and Lucene” 

43 
 

described is built to scale up to potentially amount of data comparable with that 

scenario. 

The final objective is to give to the user a unified interface against the query 

system dispatching the Lucene query through the Cluster. 

From a user perspective we want to build a web based system where the users 

search for technical papers performing a keyword based search, retrieve the 

results and download the original papers. 

 

Keyword based search system are those kind of system where users submit one 

or more keywords used to filter the results.  

We’ve already introduced the Boolean model as part of the restriction that can 

be used with Lucene, so for example a list of words that must be or can be 

present in a list of documents.  

Modern search engines basically in most of the cases hide this complexity from 

the user side and propose a simple unique text field: we use Google usually 

trying to match a single term or part of a phrase and so in detail applying the 

Figure 6 Front end main use case 



Università di Roma “Tor Vergata” - “Building a distributed search system with Apache Hadoop and Lucene”  
 

 44 

kind of restrictions that, in Lucene terminology, are Term query, or Phrase 

query.  

It is worth mentioning that we are analyzing unstructured data, so data 

extracted from a binary document or a textual document, and not from a 

database, which can be queried using the known SQL queries.  

We’re not using either an approach based on knowledge representation and 

reasoning, for example using an Ontology and a TripleStore: in this case each 

document added to the system should be annotated by an operator, generally 

human, against the a priori knowledge representation decided. 

What we are analyzing are amount of data, coming in a number that would be 

extremely hard to annotate manually, and so has to be searched using the 

technologies already described before which match keywords against and 

index.  

This use case will be a simple Lucene based search engine, if the index was 

unique, but we have multiples indexes, one for each data node and the search 

has to be represented as unified and consisted to the user.  

The users access a web based interface and perform the following operations: 

• Define a list of keywords  

• Launch a search against the system  

• Retrieve the results 

We assume the operator of the service is an academic interested on a list of 

papers afferent to his domain of interest, or researcher exploring a new 

technology, for example. In these use cases the system need to find the papers 

matching the user’s profile and proposing through the web interface or pushing 

them using other channels.  

There is a list of consequences coming from these requirements: 

1. It is necessary to get the user profile, therefore store the user interests 

2. Having the user profile, results can be delivered asynchronously, for 

example to the user email or the user dashboard. 

In particular the second point is crucial for the technology we’re using: as we’ll 

describe in the following sections, most of the analysis are made against a 



 Università di Roma “Tor Vergata” - “Building a distributed search system with Apache Hadoop and Lucene” 

45 
 

cluster of nodes, using jobs triggered by an input, so could be a delay time 

from the request and the result: in this case the system will prompt the result to 

the user later using different channels. 

In conclusion, most of the search will produce their results asynchronously. 

The sequence diagram describes a basic flow of operation for the actor user. 

The first operation required is to register to the portal: the operation allows to 

get the information essentially to grant access to the portal and to match the 

library of grants documents to his profile.  

In this phase there is the presence of an extra component, which is the portal 

DBMS used to store user profiles and credential and eventually to manage 

dynamic document or information needed by a Content Management System.  

This aspect could be in conflict with the architecture described which claims to 

be not driven by a DBMS approach, which instead, is confirmed: the online 

database is just a support one for utility information that we want to keep 

separate from the Lucene indexes and in general from the Hadoop in order to 

have a reasonable separation of concerns25. 

Once registered the user enters a basic flows based on mechanism of pushing 

results and prompting results to his dashboard. 

The user profile is converted into a SearchFilter, which is basically a 

representation, in term of Lucene query, of the user keywords of interest. The 

query is performed against the frontend Hadoop Distributed Cache. 

The system is based, in fact, on a distributed cache mechanism: once the query 

is performed a mechanism similar to the normal cache is applied: first it is 

verified if there is a hit on the cache, and in case it's not present it is propagated 

to the backend were the Map and Reduce job is executed and finally a new 

entry is added to the distributed cache. 

The entire system is based on a messaging system and a list of triggers 

activated by a new hit or a miss on the cache: for this reason the system is built 

up incrementally in a way to serve an increasing numbers of request on real 

time directly and without invoking the backend. 

                                                
25 http://en.wikipedia.org/wiki/Separation_of_concerns 



Università di Roma “Tor Vergata” - “Building a distributed search system with Apache Hadoop and Lucene”  
 

 46 

The cache could be associated in a way to an inverted index which links a 

searchFilter (which is a serialization of a list of terms restrictions) to a list of 

technical papers: 

 
𝑆𝑒𝑎𝑟𝑐ℎ𝐹𝑖𝑙𝑡𝑒𝑟!"#!! → 𝑇𝑒𝑐ℎ𝑛𝑖𝑐𝑎𝑙𝑃𝑎𝑝𝑒𝑟𝑠 !"#!! 

 

Obviously using this approach would be possible to create intersection or union 

of the result sets: 

 
𝑆𝑒𝑎𝑟𝑐ℎ𝐹𝑖𝑙𝑡𝑒𝑟(!"#!!    !"#  !"#!!) → 𝑇𝑒𝑐ℎ𝑛𝑖𝑐𝑎𝑙𝑃𝑎𝑝𝑒𝑟𝑠 !"#!!  ⋂ 𝑇𝑒𝑐ℎ𝑛𝑖𝑐𝑎𝑙𝑃𝑎𝑝𝑒𝑟𝑠 !"#!!       

𝑆𝑒𝑎𝑟𝑐ℎ𝐹𝑖𝑙𝑡𝑒𝑟(!"#!!    !"  !"#!!) → 𝑇𝑒𝑐ℎ𝑛𝑖𝑐𝑎𝑙𝑃𝑎𝑝𝑒𝑟𝑠 !"#!!     ∪ 𝑇𝑒𝑐ℎ𝑛𝑖𝑐𝑎𝑙𝑃𝑎𝑝𝑒𝑟𝑠 !"#!!       

 

  

 



 Università di Roma “Tor Vergata” - “Building a distributed search system with Apache Hadoop and Lucene” 

47 
 

 



Università di Roma “Tor Vergata” - “Building a distributed search system with Apache Hadoop and Lucene”  
 

 48 

The components present on the system are shown in the following diagram, 

together with their dependencies. The architecture proposed has a clear 

division between the frontend, which is the component essentially dedicated to 

extract input and presenting the result to the user, from the back end, which is 

where the data is analyzed, extracted and the indexes populated. As already 

declared in the first section, the solution proposed has a clear and marked 

distinction between the read operations, basically delegated to the cache 

mechanism, and the write operation (in our case represented by Lucene index 

updates), which are done by different component and distributing on a scalable 

cluster. 

 
Figure 7 Portal component diagram 



 Università di Roma “Tor Vergata” - “Building a distributed search system with Apache Hadoop and Lucene” 

49 
 

4.6 The Cluster Set up  
 

To set up a Hadoop Cluster, it’ necessary to have a sufficient number of 

machines, in order to distribute the computation and store resources among 

them.  

We’ve already introduced the necessity that Hadoop is aware of the network 

topology chosen: the place where is declared is the list of XML configuration 

files where the name node and data node, masters and slaves, are indicated. 

For our analysis we used a set up made by a name node, and a cluster of 2 data 

nodes. By definition, the name node has the control and loads in memory the 

virtual file system. 

Access through the single nodes is managed by SSH:  

Secure Shell (SSH) is a network protocol based on cryptographic access used 

to remote command login and remote command execution.  

The way the servers in the cluster access and execute commands on the other 

nodes is using an authentication based on RSA certificate: the name node(s) 

certificate, in fact, is listed in the list of the authorized hosts by the other 

servers in the Hadoop cluster.  

Using RSA certificate (with 1024 bit encoding) is considered a secure way to 

login into a Unix based system (because of the combination of private and 

public keys) and also allows the local machine to execute remote command on 

the remote one automatically and without using a password-based login (like in 

a normal terminal). 

This architecture allows, for example, starting simultaneously all nodes from 

the master. Master and slaves are concept familiar also to Hadoop: in particular 

master and slaves have a role both in the Map and Reduce Layer but also in the 

HDFS layer. 

 

The configuration of the master and slaves roles is based on a declarative 

approach based on simple list of machines or hosts accessible from the same 

network.  



Università di Roma “Tor Vergata” - “Building a distributed search system with Apache Hadoop and Lucene”  
 

 50 

In our case the entire cluster shares the same Operating System which is Linux 

Ubuntu 12.04, but this is not strictly necessary: what is required, in fact, is a 

uniform version of Hadoop.   

 

When invoked, the startup procedure triggers the communication between the 

nodes in order to ensure that are reachable and accessible. 

 

As clearly stated in the documentation, it’s necessary to have the same version 

running on all machines: we decided to opt for version 1.2.0 (last 1.* version 

stable).  

Hadoop is completely written in Java (like Lucene), and so it’s necessary also 

to have the same version of the Java Run Time Environment on the entire 

clusters: our network has the version 1.6 of the JRE provided by Oracle.  

The architecture of the nodes is shown in the previous pictures: Name node is 

the also the master while the other 2 machines are slaves. 

Figure 8 HDFS task and job Tracker 



 Università di Roma “Tor Vergata” - “Building a distributed search system with Apache Hadoop and Lucene” 

51 
 

 

Having a setup made of multiple nodes can theoretically lead to concurrency 

problems: multiple nodes accessing the same file at the same time.  

To avoid these kinds of potential deadlocks, the mechanism implemented is 

called “lease” and used originally in the Google File System 

When a client contacts a data node to update an index, the data node tries to 

acquire a lease from the name node. If it fails, then it returns an error message 

indicating that a lease cannot be obtained, and therefore the client will try other 

replicas in order to find one. 

Data nodes request a lease as part of the heartbeating, which is the bit of 

information exchanged at a fix interval between data node and name node: if a 

data node fails, the lease will become available again for other nodes. 

Consequently any data that was written to the index prior to the failure will be 

lost, so the client needs to take responsibility for uncommitted data. 

 

4.6.1 Using Map-Reduce to populate the index 
 
As already said we’ll have a number of index equals to the data nodes present 

on the system (actually we could decide to use also the name node as part of 

this distributed index architecture, since it is part of the HDFS and have 

visibility of the virtual folders present). 

The first operation has to be the one to populate the distributed Lucene index.  

 

Figure 9 Master and Slaves 



Università di Roma “Tor Vergata” - “Building a distributed search system with Apache Hadoop and Lucene”  
 

 52 

Assuming we divide equally the library of technical papers for each node we 

could store data in the index using a Map task. The Map task will emit an entry 

for each document into populating the index.  

The Map phase of the Map/Reduce job formats, analyzes and parses the input 

(in parallel), while the Reduce phase collects and applies the updates to each 

Lucene instance (again in parallel). The updates are applied using the local file 

system where a Reduce task runs and then copied back to HDFS. 

For example, if the updates caused a new Lucene segment to be created, the 

new segment would be created on the local file system first, and then copied 

back to HDFS. 

When the job is completed the “new index” is ready to be queried. From a 

performance perspective is very important that they are created incrementally, 

so adding or updating documents but not rebuilding everything from scratch. 

To distribute the index, it’s necessary to assure consistency of some of the 

main components involved which are the parser, analyzer and the input paths. 

The aim is to ensure that each PDF file representing a technical paper is 

parsed, analyzed and added to the local index in the same way for any data 

node registered to the cluster.  

Actually this scope is fulfilled distributing the same job over the network, 

because the Lucene implementation is part of the “map” phase and therefore is 

a code dependency of the same bundle (the job jar file in detail). 

Scope of the reduce phase is to propagate the query against the entire cluster 

and collect the results, ordering it by relevance and score.  

The reduce function therefore for each key represented by the single index 

results, merges the two result set ordering it in the inverted index. 

4.6.2 The Jobs architecture 
 
For the purpose just mentioned we require at least two jobs: the indexing job 

which is the one used to build the n-indexes and search job which merge the 

result of the query and insert a new entry on the cache, and they need to be 

executed in order. 



 Università di Roma “Tor Vergata” - “Building a distributed search system with Apache Hadoop and Lucene” 

53 
 

To orchestrate different jobs on a single instance there are several approaches 

possible: the most common is simply to indicate a sequence of jobs in the main 

configuration: this approach runs the jobs in a strict sequence: the second one 

starts only when the first one is completed. 

There is also the possibility to design a workflow when there are several jobs 

running with a more complex and conditioned sequence. 

Of course, in our case, a declarative approach will be enough an so there’s no 

need to have a complex jobs sequence. 

 
 	  



Università di Roma “Tor Vergata” - “Building a distributed search system with Apache Hadoop and Lucene”  
 

 54 

5 Building up an administration 
console 

5.1 The architecture component 
 
Scope of this section is to describe how to build the front-end architecture, both 

from a user experience and system perspective.  

So far, we’ve analyzed a way to access and analyze data, using the Map and 

Reduce approach, now we want to illustrate how to deliver the search function 

using a distributed cluster and present it using a web application.  

In general, having a system with owns a massive amount of data is 

theoretically independent from having a relevant number of users accessing the 

system, but of course, in practice, it’s quite common to have this concurrent 

situation in particular because in most of the case are users the ones who 

generate the contents26. 

It would be also extremely complicated to justify an existence of this 

infrastructure without an adequate traffic and business implications.  

 To design this frontend architecture there are two main components that has to 

be studied: 

1. The front end architecture 

2. The user experience 

5.2 The front end architecture 
 
We already mentioned the fact that we access the inverted index of technical 

papers using a distributed cache sitting on top of the HDFS file system 

The frontend application is though a web application hosted on of a web 

server, i.e. an application dedicated to distribute contents and responds to 

HTTP requests.  

The entire technology stack used so far is based on the Open Source software 
                                                
26 Actually this assumption is particurarly true when the system has a lot of user generated data: the most common 
example is a social network.  



 Università di Roma “Tor Vergata” - “Building a distributed search system with Apache Hadoop and Lucene” 

55 
 

and we opted of course also in this case for the Apache Web Server and 

Apache Tomcat Server to build up the web application.  

In particular the frontend application is a J2EE application distributed to a list 

of frontend servers, which can be compared to of Content Delivery Network. 

For simplicity we assume to have a single load balancer which dispatches the 

request to a list of frontend servers Apache, which again proxy the request to 

the application server which deploys the application; of course when the 

scenario scales up again, and it’s common to have a multiple load balancers or 

even multiple WAN used to delivered the content-.  

This is the case when the data is not stored on cluster afferent to a single 

location but can be distributed geographically in different data center located in 

strategic point of the globe, in order to have the shortest path between the 

request and the response and serve them independently from their geographical 

origin. 

The application, in the end, is the one that connect the distributed cache and 

respond to the server, so processes the requests (HTTP request, since our 

system is web based), and produces the response. The same package is 

delivered to each front end server, so each application server loads, using the 

cache, the inverted disturbed index and act as shard for the application.  

The entire architecture is based on fail over strategy and a natural redundancy: 

in fact each frontend can eventually be detached without affecting the entire 

capability of the system to remain substantially stable. 

An essential picture of the system is shown in the following diagram: 



Università di Roma “Tor Vergata” - “Building a distributed search system with Apache Hadoop and Lucene”  
 

 56 

 
Figure 10 Frontend servers architecture 

5.3 Front-end design and architecture 
 
From the user perspective side we need to build the application in order to have 

different level of users and roles available.  

The first role involved in the system is the front end user, which is the 

principal business actor of the system. As already said, the user accesses the 

main search functionality after the registration, which is a single operation of 

transferring the keywords of interest into the utility database to the system.  

We’re already mentioned that the frontend has a utility database which is 

functionally different from the Lucene index and stores user profiles and other 

information required from the portal.  

For the scope of our analysis the use of this database was merely due to clearly 

separate the core business logic that informs the data processing from the one 

that on the other hands, is necessary to maintain a portal based on restricted 

access.  

This database though, when the system becomes very big, could be a potential 

bottle neck for the same reason that already discussed and consequently we 

could apply the same solution: again Map and Reduce.  

 

Actually we could also use a specific technology based on Hadoop to handle 



 Università di Roma “Tor Vergata” - “Building a distributed search system with Apache Hadoop and Lucene” 

57 
 

distributed data base, in particular HBASe27, which is a distributed database on 

top of the Hadoop Cluter. Introducing this kind of technology is out of the 

scope for our work at the moment so we won’t go into the details of this 

approach which basically is designed to see the entire cluster as a distributed 

DBMS which can be queried using a dialect similar to SQL, but of course 

without some of the advanced feature of a DBMS like transactionality, 

complex schema, etc. 

 

5.4 User experience 
 
From the information architecture we need to build a list of pages necessary for 

the basic set up of the system. In particular the main entry point will be: 

• Registration page 

• Login page 

• Search page 

• Dashboard 

We’ve designed possibility that in case the result of the research is not present 

on the front end cache it can be delivered asynchronously using the user email 

or pushing a notification on the user dashboard. The front end user access the 

system having both options after the login to save a result set of data or 

perform a real time search against the system.  

The scope of this functionality is to store previous searched performed by the 

user or, in case of a miss on the cache, to delivery to the user email and present 

to the dashboard for the next login.  

                                                
27 http://hbase.apache.org// 



Università di Roma “Tor Vergata” - “Building a distributed search system with Apache Hadoop and Lucene”  
 

 58 

A general dataflow of the user is shown in the following picture: 

 

A part For the front end users it is important to sketch the portal section 

dedicated to the administrative roles, which are:  

• Administrator  

• Editor  

The administration console is the place dedicated to the Cluster maintenance, 

to rebuild the cache and check the status of the system. Hadoop provides some 

tools to monitor the cluster and check the status of the distributed file system: 

the administration console extends those functionality with also some 

functionalities to export and visualize data.  

Like any file system we need to make sure that the all application is working 

properly, so eventually substitute the damages nodes, or add nodes when the 

total capacity of the system is reaching a security alert limit, which informs the 

administrator to extend the dimensios. Of course an important part of the 

system administration is to monitor the system analytics: number of patents, 

Figure 11 Front end data flow 



 Università di Roma “Tor Vergata” - “Building a distributed search system with Apache Hadoop and Lucene” 

59 
 

request per unit time, unique visitors. 

 

All these features has to be delivered using a report tool which can export its 

data using a specific visualization (graphs, histogram and so on) or formatting 

data according to well known standard like CSV (Comma Separated Value) or 

Microsoft Excel.  

The editor role is common in any frontend system because he moderates the 

contents and the user, and eventually operates as reporter for the administrator. 

An editor acts as support for the system and performs operation, which are 

related to the specific communication strategy of the portal, or the system 

design. 

 

5.5 The service level  
 

Finally it's worth to mention a different level of access that the platform can 

offer: the service layer.  

We've introduced so far a design of the system based totally on a web based 

access, but most of modern system, influenced by the WEB 2.0 approach, 

offers their service as remote service, there APIS (Application Programm 

Interfaces interoperable by remote machine call using Soap or Restful services. 

Figure 12 Administrator Data Flow 



Università di Roma “Tor Vergata” - “Building a distributed search system with Apache Hadoop and Lucene”  
 

 60 

This service level is particular actual and useful when the potential clients of 

the application are not just the web users, but also users who access the system 

using either mobile devices or non-standard interfaces: in this case it is 

necessary to exchange communication between the server and the client using 

remote calls over HTTP which return a content representation of the data using 

XML or JSON28. 

In other word a special section of the portal, for example separated with a 

special URL pattern (service/* ad example) will be dedicated to expose 

services using interfaces dedicated to machine. To design this part it is 

necessary to expose the core functions of the portal and deploy them as service: 

• The search function 

• The “get” paper function. 

 

A basic usage of the platform will be based on SOAP or REST. In the first case 

the method is invoked using XML as envelope while in the second place the 

method is invoked using the HTTP methods (GET, POST, PUT, DELETE) and 
                                                
28 JSON stands for Javascript Object Notation and is a way to represent an object using Javascript notation. An 
example is the following: 
{ 

name: ‘Mirko’, surname:’Calvaresi’  
} 
 

Figure 13 Remote API Class Diagram 



 Università di Roma “Tor Vergata” - “Building a distributed search system with Apache Hadoop and Lucene” 

61 
 

passing the object representation as input, and in same way for the output. 

5.6 Information architecture and presentation 
 
In order to complete the design of the frontend it’s necessary to introduce the 

interface design, and the user experience. We’ll not investigate the graphical 

implementation but we’ll propose minimal information architecture for the 

front end user profile. The output of the design will be the wireframes of the 

two main pages of the system: the login page and the user dashboard. In 

particular the dashboard is the place where the user, after the login, accesses 

the main search functionality but also checks the detail of the single paper and 

eventually downloads it. We introduced at this point some options to share the 

results among other users: in fact it is possible to serialize a search filter an 

consequently share it across the network using for example the same XML or 

JSON format used for the Rest Api. From usability perspective it’s essential 

that the dashboard is a place where each function is easy visible and accessible, 

links are marked properly and the working area is clearly indicated to the user. 

From a technology perspective, the frontend design will be strongly influenced 

by the evolution of the interface paradigm introduced in the last years by the 

major players with wide adoption of HTML5 and JAVASCRIPT in particular.  

The use of these technologies allows the user to have the feeling of immediate 

response from the system, avoid the waiting time necessary for the normal 

cycle of page processing and rendering to the client. 

This perception of immediate response, also declined up to the interface level 

enforces the sense of immediate answer from the system, which is possible just 

with a pre-processing of the data.   



Università di Roma “Tor Vergata” - “Building a distributed search system with Apache Hadoop and Lucene”  
 

 62 

 

Figure 16 Log in page 

Figure 15 Login Page 

Figure 15 Front End Dashboard 



 Università di Roma “Tor Vergata” - “Building a distributed search system with Apache Hadoop and Lucene” 

63 
 

6 Testing and comparing results  
 

In order to measure effectively the performance we have to clearly divide the 

set up cost of the overall architecture and the computation cost of the tasks.  

In other words, how much is the Hadoop cluster overhead from the effective 

time required for the operations that need to be performed on it.  

As already said, to run a job in Hadoop it is necessary to first setup the cluster 

and namely data nodes and name nodes, but and an important function in terms 

of performance is also performed by the “Task Trackers”, which are the nodes 

of the cluster with the function to assign and run tasks against the single 

machines involved in the cluster: The Task Tracker executes each 

Mapper/Reducer task as a child process in a separate Java Virtual Machine. 

When a map and reduce job is started, the framework produces a number of 

map and reduce tasks, which are consumed by the system with the capacity of 

the overall cluster: for capacity we intend the max number of concurrent tasks 

running at the same time by the infrastructure. 

Like shown in Figure 17 Job Execution Detail), which represents the real time 

statistic information for a single job, each phase (either Map or Reduce) are 

split in number of tasks and those are spread around the cluster.  

So, the entire execution time of the job can be formally defined as: 

 

𝐽𝑜𝑏!"#$%&%'()*'+$ =

𝑐𝑙𝑢𝑠𝑡𝑒𝑟!"#$"%& + 𝑡𝑎𝑠𝑘𝑇𝑟𝑎𝑐𝑘𝑒𝑟!"#$% +𝑀𝑎𝑝𝑇𝑎𝑠𝑘𝑠!"!#$%&'()&*! 

+𝛼𝑅𝑒𝑑𝑢𝑐𝑒𝑇𝑎𝑠𝑘𝑠!"!#$%&'()&*! 

 

In detail we have a startup cost which actually is required to dispatch the 

heartbeats information around the entire cluster, the cost to calculate the 

number of tasks and setup the execution queue and finally the Map and Reduce 

execution time. 

We introduced a 𝛼 factor, because the Reduce phase starts when the Map tasks 



Università di Roma “Tor Vergata” - “Building a distributed search system with Apache Hadoop and Lucene”  
 

 64 

are still running (usually at 50% of completion), so this factor indicates the 

remain percentage of reduce tasks after Map completion.  

Obviously Map and Reduce phases are the most time consuming; in detail they 

can be expressed as: 

 

 𝑀𝑎𝑝𝑇𝑎𝑠𝑘𝑠 𝑅𝑒𝑑𝑢𝑐𝑒 !"!#$%&'()&*! = 𝑁𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝑇𝑎𝑠𝑘𝑠 ∗ !"!!"#$%&'()!*+,-*.'
!"!!"#!$%%&#'($##)#*+,-.-

 

 

Therefore, given the same operation (same average execution time) what really 

determines the performance are the number of tasks and how many are running 

at the same time on the nodes. 

To understand this point is necessary to describe how the number of tasks is 

calculated in Hadoop:  it is in fact determined by the InputFormat, which is the 

kind of the input passed to the Map and Reduce. In the example already 

described of Word Counts it was used an input format, which creates a task for 

each input split calculated, and then passes this split to map, which count 

occurrences of terms line by line.  

In our case, since the need was to index PDF files, we created a custom 

InputFormat which produces a single task for each file: again in the above 

example we have 1330 tasks which corresponds to the number of files in HDS 

path. 

The number of concurrent tasks running on the entire cluster is calculated by 

Hadoop itself, based on the available JAVA HEAP memory, the computation 

time of the single task and the CPU load: this value is adjusted by the system 

during the job execution, but remains in the range of 2-8 per data node.  

In conclusion, the execution time of a job is really determined by the number 

of concurrent Map and Reduce concurrently executed on the cluster, and this is 

determined by the number of data nodes available: to reduce the time we need 

then to add machines to the node, much more than increase the computation 

capacity of the single machine. 

Finally it’s worth to explore the overhead due to the job submission. In our 

simulation it takes up to 1 min and 30 seconds: this time is used to perform the 



 Università di Roma “Tor Vergata” - “Building a distributed search system with Apache Hadoop and Lucene” 

65 
 

following operations: 

• Checking the input and output specifications of the job. 

• Computing the InputSplit values for the job. 

• Copying the job's jar and configuration to the Map Reduce system 

directory on the FileSystem. 

• Submitting the job to the JobTracker and optionally monitoring its 

status. 

As mentioned the input splits is crucial for the performance of the jobs.  

Hadoop has its peculiarity to perform very well when analyzing large files 

rather than many small files, and the reason is basically to search in the 

peculiarity of HDFS, which default size of a node is 64 MB. 

We’ll show in the simulation that the real benefit of Hadoop is to analyze a 

relatively small number of large files (GB files). 



Università di Roma “Tor Vergata” - “Building a distributed search system with Apache Hadoop and Lucene”  
 

 66 

 
Figure 17 Job Execution Detail 

 	  



 Università di Roma “Tor Vergata” - “Building a distributed search system with Apache Hadoop and Lucene” 

67 
 

6.1 Simulations 
 
We ran a simulation involving a time consuming task: parsing 2 GB of PDF 

file coming from 1330 patents and adding them to a distributed Lucene Index.  

In particular we ran this simulation with the system architecture already 

described with a name node and an increasing number of data nodes. 

The results are showed in the following table, where the last row indicate a 

scenario without Hadoop: 

 
Data 
nodes 

CPU Of 
the 
Nodes 

RAM 
available 

Name 
Nodes 

Number 
of file 

Total 
Bytes 
read 

Job 
Submission 
Cost 

Total 
Job 
Time 

2 Intel i7 
CPU 2.67 
GHZ 

4 GB 1 1330 2.043 
GB 

1 min 5 sec 24m 35 
sec 

3 Intel i7 
CPU 2.67 
GHZ 

4 GB 1 1330 2.043 
GB 

1 min 21 sec 12 min 
10 sec 

4 Intel i7 
CPU 2.67 
GHZ 

4 GB 1 1330 2.043 
GB 

1 min 40 sec 8 min 22 
sec 

1 (No 
Hadoop) 

Intel i7 
CPU 2.67 
GHZ 

4GB 0 1330 2043 
GB 

0 10 min 
11 sec 

 
As general consideration we can see that the adding data nodes increase the 

overall capacity of the system producing a major increase in the average 

number of active tasks and therefore a consistent reduction of the total job 

time.  

The absolute time is, on the other hand, not very satisfactory: that’s because we 

have too many files in the HDFS.  

Comparing these results with a single machine node, it turns out that the real 

benefit of Hadoop is sensible just with an increasing number of data nodes and 

is pretty useless with a small cluster.  



Università di Roma “Tor Vergata” - “Building a distributed search system with Apache Hadoop and Lucene”  
 

 68 

 

We conducted also another simulation in a familiar scenario for Hadoop: we 

downloaded the entire Italian Wikipedia article database (around 1 GB 

approximately) and ran the "WordCount” jobs against it.  

We compared the result with a stand alone Java program which executes 

exactly the same task, but without using Map and Reduce (of course possible 

with a file dimension still acceptable). 

 
The job, theoretically much heavier from a computation perspective, it is 

executed in a much shorter time (as indicated the table below): the reason is 

that the split produces a limited number of tasks and the execution queue is 

shorter.  

 

 

 In conclusion this technology is designer to serve a large cluster of common 

Data 
nodes 

Cpu Of the 
Nodes 

RAM 
available 

Name 
Nodes 

Number 
of file 

Total 
Bytes 
read 

Job 
Submission 
Cost 

3 Intel i7 Cpu 
2.67 GHZ 

4 GB 1 1 942 
MB 

3 min 18 sec 

4 Intel i7 Cpu 
2.67 GHZ 

4 GB 1 1 942 
MB 

2 min 17 sec 

1 (No 
Hadoop) 

Intel i7 Cpu 
2.67 GHZ 

4 GB 1 1 942 
MB 

4 min 27 sec 

Execution time (seconds) 

Figure 18 Performances for Lucene Indexing 



 Università di Roma “Tor Vergata” - “Building a distributed search system with Apache Hadoop and Lucene” 

69 
 

servers and expresses its best performance when:  

o The quantity of data are expressed by a relatively limited 

number of big files 

o The number of nodes and the capacity of the cluster are 

designed to avoid the tasks queue, so are chosen coherently with 

the data splits. 

 

   



Università di Roma “Tor Vergata” - “Building a distributed search system with Apache Hadoop and Lucene”  
 

 70 

7 Alternatives based on real time 
processing 

 
Scope of our analysis was to investigate not merely the technology declination 

of Map and Reduce but the architectural and essential innovation produced by 

this approach.  

Our goal was not to follow the last technology trend, which obviously tends to 

be obsolete after just some periods, but to explore a different paradigm to build 

application, which can be applied to Big Data scenario. 

The question is of course if there's just this alternative or other possibilities can 

be explored in order to manage the same complexity.  

As first answer can be offered by another "hot" topic in the contemporary 

enterprise architectural debate, which is in a way similar to Map And Reduce: 

NOSQL Databases.  

Relational databases are built on the so-called ACID model, which requires 

that the database always preserve the atomicity, consistency, isolation and 

durability of transactions.   

NoSQL, on the contrary, introduces the BASE model: basic availability, soft 

state and eventual consistency. 

Instead of using structured tables to store fields, NoSQL databases use, again, 

the notion of a key/value store: there is no schema for the database. It simply 

stores values for each provided key, distributes them across the database and 

then allows their efficient retrieval. 

To give an essential example using the probably most famous one, MongoDb, 

the operation of inserting an element into the database can be executed using 

the following commands: 

db.testData.insert({ name : "mongo" } 

which inserts a document into the schema “testData”. Document for NoSql 

database are concept very similar to what already seen for Lucene: in various 



 Università di Roma “Tor Vergata” - “Building a distributed search system with Apache Hadoop and Lucene” 

71 
 

sense these technologies are pretty comparable to the architecture described 

because of the intensive use of indexes to store data and retrieve them 

efficiently. The structure of a document it’s similar to the already introduced 

JSON serialization, which is a conventional textual representation for an 

object.  

On the other side to get data the application has to perform a find: 

db.testData.find()  

This operation returns the following results. The “ObjectId” values will be 
unique: 

{"_id" : ObjectId("4c2209f9f3924d31102bd84a"), "name" : "mongo" 
}  

NoSQL belongs to several types: 

• Basic Key/Value which associates basically a binary object to a key 

represented by an hash 

• Document stores like the one already described 

• Columnar databases, which are hybrid between NOSql and relational 

databases because they present some rough row and column structure 

• Graph databases, that represents relations using a tree structure 

  

The core of the NoSQL database is the hash function: the key, in fact, is used 

to retrieve the single object from the database, but also the hash is used to 

direct the pair to a particular NoSQL database server, where the record is 

stored for later retrieval.  

NoSQL databases don’t support, of course, advanced queries which can be 

expressed by SQL: that’s because they’re designed explicitly to rapid, efficient 

storage of key->document pair and to perform a mostly an reads operation 

more than write once. In particular it can’t be demonstrated that refusing the 

Acid principle, the system can acquire a major benefit in terms of performance. 

In particular, renouncing to atomicity reduces the time tables (sets of data) are 



Università di Roma “Tor Vergata” - “Building a distributed search system with Apache Hadoop and Lucene”  
 

 72 

locked; avoiding consistency allows to scale up writes across cluster nodes, 

and dropping durability gives the possibility to respond to write commands 

without flushing to disk. 

The simplistic architecture of NoSQL databases is a major benefit when it 

comes to redundancy and scalability. To add redundancy to a database, 

administrators simply add duplicate nodes and configure replication: scalability 

therefore is simply a matter of adding additional nodes. When those nodes are 

added, the NoSQL engine adjusts the hash function to assign records to the 

new node in a balanced fashion.  

 

To conclude, breaking the ACID principal with is part of the specification for 

DBMS opens the possibility to scale up more efficiently when the scenario 

present ad amount of data that really requires it. 

This approach can be compared to Map and Reduce even though their 

similarities are limited, because it offers a scalable approach but it’s not based 

on preprocessing data, with is the basic algorithmic innovation. 

On the specific of your use case, which involves the distribution of the 

potentiality of Lucene search against a large cluster, it’s necessary to mention a 

specific technology based on Lucene, which offers a Cloud approach to textual 

search: Apache SOLR.  

Essentially Apache SOLR is a set of facades for accessing Lucene index, in 

particular offering an administration environment for defining the document 

types called Schema, but most importantly a set of RESTful interface what can 

be in invoked using simple XML or JSON content representation.  

This utilities allows to offer the search functionality as support function to any 

other system, eventually built on different technologies, and serving its data as 

a separate component to any systems.  

This architecture is becoming very popular because it externalizes some high 

impact components like Search to and external and auto-consistent system, 

which establish to the other components a contract accessible via HTTP. 

From version 4, moreover, Apache SOLR offers a native function to replicate 



 Università di Roma “Tor Vergata” - “Building a distributed search system with Apache Hadoop and Lucene” 

73 
 

the indexes to a Cluster and keep them synchronized: Zookeper. 

In conclusion the emerging Big Data scenario are stimulating the adoption of 

different technologies and algorithm approaches: one of the most important 

principle is to separate the data analysis from the request processing services.  

Our goal was to show how Map and Reduce represents an efficient solution 

especially when it required analyzing an important amount of raw data 

applying specific algorithms but also to show that overall cost of the 

architecture is not trivial, so it really has an effective benefit when the scenario 

matches a real Big Data scenario and the number of nodes are consequently 

high.  

 

 
 	  



Università di Roma “Tor Vergata” - “Building a distributed search system with Apache Hadoop and Lucene”  
 

 74 

8 Bibliography 
 

1) Cheng-Tao Chu, Sang Kyun Kim , Yi-An Lin, YuanYuan Yu, Gary 
Bradski, Andrew Y. Ng, Kunle Olukotun. Map-Reduce for Machine 
Learning on Multicore CS. Department, Stanford University 353 Serra 
Mall. 
 

2) Dhruba Borthakur. The Hadoop Distributed File System: Architecture 
and design. Document on Hadoop Wiki, 2008. 

 
 

3) Doug Cutting. Proposal: index server project. Email message on 
Lucene-General email list. 
 

4) Douglas, Laney. The Importance of 'Big Data’: A Definition. Gartner. 
Retrieved 21 June 2012. 

 
 

5) Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deb- 
orah A. Wallach, Mike Burrows, Tushar Chandra, Andrew Fikes, and 
Robert E. Gruber. Bigtable: a distributed storage system for structured 
data.  
 

6) Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data 
processing on large clusters. 

 
 

7) Konstantin Shvachko, Hairong Kuang, Sanjay Radia, Robert Chansler. 
The Hadoop Distributed File System. 
 

8) L. A. Barroso, Jeffrey Dean, and U. H ̈olzle. Web search for a planet: 
The Google cluster architecture. IEEE Micro, pages 22–28, March- 
April 2003. 

 
 

9) Mike Burrows. The chubby lock service for loosely coupled distributed 
systems. In USENIX’06: Proceedings of the 7th conference on 
USENIX Symposium on Operating Systems Design and Imple- 
mentation, pages 24–24, Berkeley, CA, USA, 2006. USENIX 
Association. 
 

10) Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The Google 
file system. In SOSP ’03: Proceedings of the nineteenth ACM 
symposium on Operating systems principles, pages 29–43, New York, 
NY, USA, 2003. ACM Press. 



 Università di Roma “Tor Vergata” - “Building a distributed search system with Apache Hadoop and Lucene” 

75 
 

 
11) Tom White, Hadoop the definitive guide. O’Relly 2012. 

 
12) Tushar D. Chandra, Robert Griesemer, and Joshua Redstone. Paxos 

made live: an engineering perspective.  
 

8.1 Web Resources 
1) Amazon Dynamo. 

http://www.allthingsdistributed.com/2007/10/amazons dynamo.html. 
2) Apache Hadoop. http://hadoop.apache.org/ 
3) Apache Lucene. http://lucene.apache.org/java/docs/index.html. 
4) Apache Nutch. http://lucene.apache.org/nutch/. 
5) Apache Tika. http://tika.apache.org/ 
6) Apache Zookeeeper. http://www.sourceforge.net/projects/zookeeper/. 
7) Bailey. http://www.sourceforge.net/projects/bailey. 
8) http://techcrunch.com/2012/08/22/how-big-is-facebooks-data-2-5-

billion-pieces-of-content-and-500-terabytes-ingested-every-day/ 
9) http://www.emc.com/collateral/analyst-reports/diverse-exploding-

digital-universe.pdf 
10) Katta (An open source Hadoop implementation). 

http://www.sourceforge.net/projects/katta/. 
11) Werner Vogel. Eventually Consistent. 

http://www.allthingsdistributed.com/2007/12/eventually 
consistent.html. 

 

 

 
                                                
 


